Rapamycin treatment of Mandibuloacral Dysplasia cells rescues localization of chromatin-associated proteins and cell cycle dynamics

نویسندگان

  • Vittoria Cenni
  • Cristina Capanni
  • Elisabetta Mattioli
  • Marta Columbaro
  • Manfred Wehnert
  • Michela Ortolani
  • Milena Fini
  • Giuseppe Novelli
  • Jessika Bertacchini
  • Nadir M. Maraldi
  • Sandra Marmiroli
  • Maria Rosaria D'Apice
  • Sabino Prencipe
  • Stefano Squarzoni
  • Giovanna Lattanzi
چکیده

Lamin A is a key component of the nuclear lamina produced through post-translational processing of its precursor known as prelamin A.LMNA mutations leading to farnesylated prelamin A accumulation are known to cause lipodystrophy, progeroid and developmental diseases, including Mandibuloacral dysplasia, a mild progeroid syndrome with partial lipodystrophy and altered bone turnover. Thus, degradation of prelamin A is expected to improve the disease phenotype. Here, we show different susceptibilities of prelamin A forms to proteolysis and further demonstrate that treatment with rapamycin efficiently and selectively triggers lysosomal degradation of farnesylated prelamin A, the most toxic processing intermediate. Importantly, rapamycin treatment of Mandibuloacral dysplasia cells, which feature very low levels of the NAD-dependent sirtuin SIRT-1 in the nuclear matrix, restores SIRT-1 localization and distribution of chromatin markers, elicits release of the transcription factor Oct-1 and determines shortening of the prolonged S-phase. These findings indicate the drug as a possible treatment for Mandibuloacral dysplasia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Familial partial lipodystrophy, mandibuloacral dysplasia and restrictive dermopathy feature barrier-to-autointegration factor (BAF) nuclear redistribution

Prelamin A processing impairment is a common feature of a restricted group of rare genetic alterations/disorders associated with a wide range of clinical phenotypes. Changes in histone posttranslational modifications, alterations in non-histone chromatin proteins and chromatin disorganization have been specifically linked to impairment of specific, distinct prelamin A processing steps, but the ...

متن کامل

Mandibuloacral dysplasia: A premature ageing disease with aspects of physiological ageing

Mandibuloacral dysplasia (MAD) is a rare genetic condition characterized by bone abnormalities including localized osteolysis and generalized osteoporosis, skin pigmentation, lipodystrophic signs and mildly accelerated ageing. The molecular defects associated with MAD are mutations in LMNA or ZMPSTE24 (FACE1) gene, causing type A or type B MAD, respectively. Downstream of LMNA or ZMPSTE24 mutat...

متن کامل

Pre-treatment with rapamycin protects hematopoiesis against radiation injury

Background: Protection of hematopoietic system has become a primary goal in the development of novel medical countermeasures against ionization radiation and radiotherapy. This study was to explore the role of rapamycin in normal tissues against radiation. Materials and Methods: Mice were pretreated with rapamycin by i.p. every other day for five times before 5 Gy or 8.5 Gy γ-ray whole bo...

متن کامل

Modulation of TGFbeta 2 levels by lamin A in U2-OS osteoblast-like cells: understanding the osteolytic process triggered by altered lamins

Transforming growth factor beta (TGFbeta) plays an essential role in bone homeostasis and deregulation of TGFbeta occurs in bone pathologies. Patients affected by Mandibuloacral Dysplasia (MADA), a progeroid disease linked to LMNA mutations, suffer from an osteolytic process. Our previous work showed that MADA osteoblasts secrete excess amount of TGFbeta 2, which in turn elicits differentiation...

متن کامل

Alterations of nuclear envelope and chromatin organization in mandibuloacral dysplasia, a rare form of laminopathy.

Autosomal recessive mandibuloacral dysplasia [mandibuloacral dysplasia type A (MADA); Online Mendelian Inheritance in Man (OMIM) no. 248370] is caused by a mutation in LMNA encoding lamin A/C. Here we show that this mutation causes accumulation of the lamin A precursor protein, a marked alteration of the nuclear architecture and, hence, chromatin disorganization. Heterochromatin domains are alt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014